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We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that

there exists a large parameter space that allows the bubble to collapse into a black hole or to form a

wormhole. This may have interesting implications for the creation of a baby universe in the laboratory,

the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and

the inflationary physics.
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I. INTRODUCTION

There has been a long interest in the study of the
dynamics of vacuum bubbles in different background cos-
mology [1–7]. Presumably, these bubbles may be formed
in the course of phase transitions in the early Universe or
arise from inhomogeneities generated by quantum fluctua-
tions during inflation. In fact, Ref. [8] explored the possi-
bility that a baby universe can be created in the laboratory
by producing a small bubble of false vacuum. In these
studies, the bubble is modeled as a spherically symmetrical
region of true or false vacuum which is separated by a
domain wall from the exterior world such as Minkowski,
de Sitter (dS), or Friedmann-Robertson-Walker spacetime.
The motion of the domain wall, which is analyzed under
the general-relativistic thin-wall approximation, character-
izes the global structure of the spacetime. For example,
dependent on initial conditions, an observer in the interior
will describe a inflating bubble universe while an observer
in the exterior will describe the bubble as a black hole.

Recently, the possibility of a string landscape [9] has
opened a new perspective on the vacuum bubble dynamics.
The string landscape is considered as a complicated poten-
tial energy function in a multidimensional moduli space
with a plentitude of local minima separated by barriers of
various heights. One of these minima corresponds to the
vacuum where our Universe exists today and the evolution
of the very early Universe is determined by the route
that the Universe has taken in the landscape. However, a
detailed mapping of the structure of the landscape is still
elusive.

In the string landscape, a local minimum is a metastable
de Sitter vacuum with a certain energy scale, nucleating
bubbles with lower vacuum energies within it. When nu-
cleation is taking place, various regions of the spacetime
are inflating in various de Sitter vacua, resulting in a very

complicated global spacetime structure with a hierarchy of
vacuum bubbles separated by domain walls. Typically, the
height of the barrier between the vacua is of string scale,
so the nucleation rate in the landscape is expected to be
exponentially suppressed and far below the expansion rate
of the inflating region. Consequently, most parts of the
spacetime undergo eternal inflation, with some regions
occasionally settling to a landscape with a flat potential
that drives slow-roll inflation or to anti–de Sitter vacua
with a negative cosmological constant.
Development in the understanding of false vacuum de-

cay in the string landscape has recently been made. It was
found that under certain conditions the decay rates can be
greatly enhanced even for tall barriers due to resonant
tunneling in the presence of multiple vacua [10–12], due
to stringy effects such as tunneling via the Dirac-Born-
Infeld action [11,13], by an effect that facilitates giant
leaps in the landscape [14], or by having exponential
prefactors [15]. In light of this, it is possible that the
nucleation rate is comparable to the expansion rate of the
de Sitter phase and thus a few or even copious vacuum
bubbles may be nucleated within a Hubble radius. This
may lead to bubble collisions [16] with one of the domain
walls near our horizon, or the formation of black holes
and wormholes that induce new metric perturbation during
slow-roll inflation [17]. Furthermore, sampling the mul-
tiple vacua with shallow barriers by quantum fluctuations
during inflation may populate domain walls that may affect
the subsequent evolution of the Universe [18]. All of these,
though still speculative, may leave important observable
signatures of the string landscape.
In light of this, we reexamine the dynamics of a de Sitter

bubble in a background de Sitter spacetime. The bubble is
assumed as spherically symmetric and separated from the
background by a thin shell. Then we use Israel’s thin-shell
formalism [19] to glue the bubble to the background, as
was done in Refs. [1–4,6,8]. Although most of the global
structure of the spacetime has been categorized, the pa-
rameter space that we are interested in here has not been
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fully explored. Furthermore, the string landscape provides
a nontrivial condition on the spacetime geometry [20];
however, we will not utilize any property of the underlying
landscape on the parameter space but rather scan through
the parameters in a class of geometries.

The paper is organized as follows. In Sec. II, we review
Israel’s thin-shell formalism. In Sec. III, we derive the
equation that governs the motion of the shell and show
that in general the shell has peculiar velocity. In addition,
we briefly review the maximally extended coordinate sys-
tems of the de Sitter spacetime and the Schwarzschild-
de Sitter (SdS) spacetime. The evolution of the bubble is
discussed in Sec. IV and the numerical results are summa-
rized in Sec. V. Section VI is the conclusion. Here we
follow the sign convention and definitions in Ref. [21].

II. THIN-SHELL FORMALISM

To describe the behavior of the shell which divides the
spacetime into two regions Mþ and M�, it is simplest
to introduce a Gaussian normal coordinate system in the
neighborhood of the shell. If we denote by � the timelike
(2þ 1)-dimensional spacetime hypersurface in which the
shell lies, we can introduce (2þ 1)-dimensional coordi-
nates xi � ð�; x2; x3Þ on�, where i runs from 1 to 3. Here �
is the proper-time variable that would be measured by an
observer comoving with the shell. In the Gaussian normal
coordinate system, a geodesic in a neighborhood of �,
which is orthogonal to �, is taken as the third spatial
coordinate denoted by �. Thus, the full set of coordinates
is given by x� � ðxi; �Þ. We can take x2 ¼ � and x3 ¼ �
in the case of a spherically symmetric shell. Then the
metric can be written as

ds2 ¼ d�2 þ gijdx
idxj: (1)

We introduce an unit vector field ��ðxÞ which is normal to
� ¼ const hypersurfaces and pointing from M� to Mþ.
The induced metric on the hypersurface � can then be
written as

h�� ¼ g�� � ����: (2)

In the Gaussian normal coordinates,

��ðxÞ ¼ ��ðxÞ ¼ ð0; 0; 0; 1Þ: (3)

The Gaussian normal coordinate system is suitable for
the Gauss-Codazzi formalism [21] in the neighborhood of
� with the coordinate � orthogonal to the slices near �.
The extrinsic curvature is defined by

Kij ¼ �i;j; (4)

or equivalently

Kij ¼ ���
ij ¼ 1

2@�gij: (5)

It is evident that Kij is a symmetric three-tensor.

The Einstein equations are

R�� � 1
2g��R ¼ 8�GT��; (6)

where R�� is the Ricci tensor, R is the Ricci scalar, and

T�� is the matter energy-momentum tensor. In addition,

the energy-momentum conservation law implies

T��
;� ¼ 0; (7)

where the semicolon represents the four-dimensional co-
variant derivative. Assuming that the energy-momentum
tensor only has 	-function singularity on the shell, one can
rewrite it in terms of Gaussian normal coordinates as

T�� ¼ S��ðxiÞ	ð�Þ þ ðregular termsÞ; (8)

where S�� is the surface stress-energy tensor of the shell.

Adopting the thin-shell formalism [19], we can rewrite
the Einstein equations and the energy-momentum conser-
vation law as

½Ki
j� ¼ �8�GðSij � 1

2	
i
jSÞ; (9)

Sj
ijj þ ½T�

i � ¼ 0; (10)

and

fKi
jgSij � ½T�

�� ¼ 0; (11)

where fKijg ¼ 1
2 ðKþ

ij þ K�
ij Þ, ½A� ¼ Aþ � A� for any

quantity A, and a subscript vertical bar denotes the three-
dimensional covariant derivative.
By the symmetry analysis and the energy-momentum

conservation law [2], we have

S�� ¼ 
ð�ÞU�U� � �ð�Þðh�� �U�U�Þ; (12)

where U� ¼ ð1; 0; 0; 0Þ is the four-velocity of the shell
in the Gaussian normal coordinates. Here 
 and � are the
surface energy density and the surface tension of the shell,
respectively. In the case of a spherically symmetric shell,
the induced metric on the shell can be written as

ds2j� ¼ �d�2 þ r2ð�Þd�2; (13)

where rð�Þ is the proper circumferential radius of the shell.
Equation (10) then reduces to

_
 ¼ �2ð
� �Þ _r
r
; (14)

where the overdot denotes a derivative with respect to �.
Using the thin-shell approximation and the underlying
field-theoretical dynamics of the scalar field which com-
prises the shell [1], one can show that � ¼ 
. From
Eq. (14), it follows that _
 ¼ 0. Thus, Eq. (12) reduces to

S�� ¼ �
h��; (15)

where 
 is a constant independent of �. By combining
Eq. (9) with Eq. (15), one finds
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Ki
jðMþÞ � Ki

jðM�Þ ¼ �4�
G	i
j: (16)

III. JUNCTION CONDITIONS

For the system under consideration, we have

T�� ¼
��ð�1=8�GÞg�� interior of the shell;
�ð�2=8�GÞg�� exterior of the shell;

(17)

where �1 and �2 are the cosmological constants of the
shell interior and exterior, respectively. For convenience,
we will consider positive values for both �1 and �2 in the
following. At the end, we will extend the results for nega-
tive �1 and �2.

From the Birkhoff theorem, we can easily write down
the most general Oð3Þ-symmetric solutions to the Einstein
equations for a region of spacetime with a nonvanishing
cosmological constant. They are the dS and SdS space-
times. Thus, the metrics of the interior and exterior space-
time in the static coordinate system are

ds2� ¼ �F�ðrÞdt2 þ F�1� ðrÞdr2 þ r2d�2; (18)

where

F�ðrÞ ¼
�
1��2

1r
2 interior spacetime;

1� 2MG=r��2
2r

2 exterior spacetime:
(19)

Here M is an as yet undetermined parameter, �2
1 ¼ �1=3,

�2
2 ¼ �2=3, and d�2 ¼ d�2 þ sin2�d�2. The corre-

sponding �-� components of the extrinsic curvatures of
�, as it is embedded into the de Sitter and Schwarzschild-
de Sitter spacetimes, can be easily calculated in the static
coordinates by a standard recipe [1,2,19]. They are

KdS
�� ¼ rdS; KSdS

�� ¼ rSdS; (20)

where

dS ¼ �ð1� �2
1r

2 þ _r2Þ1=2; (21)

SdS ¼ �ð1� 2MG=r� �2
2r

2 þ _r2Þ1=2: (22)

Substituting Eq. (20) into Eq. (16), we obtain the equation
of motion of the shell,

_r 2 ¼ �4þr2

4�2
þMGð�2 þ �2

2 � �2
1Þ

�2r
þM2G2

�2r4
� 1; (23)

where

� � 4�G
 � 0 (24)

and

�2þ � ½ð�2 þ �2
1 � �2

2Þ2 þ ð2��2Þ2�1=2: (25)

It is perhaps impossible to analytically solve Eq. (23).
However, the asymptotic behavior of r is easily obtained.
We have

rð�Þ /
8><
>:
expð�2þ�=2�Þ as r ! 1;�
3MG�

�

�
1=3

as r ! 0:
(26)

Now we are going to show that the shell is not static
relative to an observer using the comoving coordinates.
Since the Schwarzschild-de Sitter spacetime approaches
the de Sitter spacetime asymptotically, it serves our pur-
pose by simply using its asymptotic form. For a de Sitter
spacetime, the transformation between the static coordi-
nates ðt; rÞ and the comoving coordinates ð�t; �rÞ is well
known, given by [22]

�t ¼ tþ 1

2�
lnj1� �2r2j; �r ¼ re��tj1� �2r2j�1=2;

(27)

where we have temporarily suppressed the subscript of �
for convenience. From the viewpoint of an exterior ob-
server in the asymptotic region, the proper circumferential
radius r is related to the comoving radius �r by

�r ¼ r

að�tÞ ; (28)

where að�tÞ ¼ expð�2 �tÞ is the scale factor of the exterior
spacetime. The proper-time rate of change of �r is

�
d�r

d�

�
SdS

¼ _r� �2rð1� �2
2r

2 þ _r2Þ1=2
aj1� �2

2r
2j ; (29)

where a is now given as a function of �. Compared with
Eq. (23), we find that in general d�r=d� � 0, i.e., the shell
cannot be evolving with a fixed comoving scale. Similarly,
the proper-time rate of change of �t is

�
d�t

d�

�
SdS

¼ ð1� �2
2r

2 þ _r2Þ1=2 � �2r _r

j1� �2
2r

2j : (30)

Using d�r=d�t ¼ ðd�r=d�Þ=ðd�t=d�Þ and Eq. (23), we have�
d�r

d�t

�
SdS

! a�1ð�tÞ
�
1þ

�
2��2

�2 þ �2
1 � �2

2

�
2
��1=2

; (31)

as r ! 1. On the other hand, from the viewpoint of an
interior observer, we can repeat the above arguments and
obtain

�
d�r

d�t

�
dS

! a�1ð�tÞ
�
1þ

�
2��1

�2 � �2
1 þ �2

2

�
2
��1=2

; (32)

as r ! 1. Hence, the necessary condition for a shell
moving with a fixed comoving scale is

�2 ¼ j�2
1 � �2

2j: (33)

This means that the surface energy density of the shell
has to compensate the difference of the vacuum energy
densities across the shell. Moreover, the shell cannot be
comoving with respect to both observers simultaneously.
Note that if � ¼ 0, the shell will become null.
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Before solving the evolution of the bubble, we should
address some issues regarding the topological structure
of the spacetime. First, there is a sign ambiguity in the
expression of the extrinsic curvature (21) and in Eq. (22)
as well. Moreover, in the static coordinate system, there
exist coordinate singularities at the event horizon, which
are indeed caused by a poor choice of coordinates.
Nevertheless, the sign of the extrinsic curvature and the
physical interpretation are manifest when it is expressed in
terms of the Kruskal-like maximally extended coordinates.

The Gibbons-Hawking maximally extended coordinate
system ðv; u; �;�Þ for the de Sitter spacetime is well
known [1,23], and it is related to the static coordinate
system for r < ��1 by

u ¼
�
1� �r

1þ �r

�
1=2

coshð�tÞ;

v ¼
�
1� �r

1þ �r

�
1=2

sinhð�tÞ:

The new metric is given by

ds2 ¼ ��2ð1þ �rÞ2ð�dv2 þ du2Þ þ r2d�2; (34)

where r is a function of u and v given by

1� �r

1þ �r
¼ u2 � v2: (35)

The metric (34) can be maximally extended over the entire
u-v plane, subject to the constraint ju2 � v2j< 1. The
coordinate system then covers the entire de Sitter space-
time. In terms of the Gibbons-Hawking maximally ex-
tended coordinate system, we can rewrite dS as

dS ¼ ���1
1 ð1þ �1rÞ2ðu _v� v _uÞ: (36)

In the case of the Schwarzschild-de Sitter spacetime,
the maximally extended coordinates was first derived by
Bazanski and Ferrari [24]. Unlike the Schwarzschild or
the de Sitter spacetime, the entire Schwarzschild-de Sitter
spacetime cannot be covered by a single coordinate patch.
This arises due to the fact that there exist both black-hole
and cosmological event horizons.

Recall that the Schwarzschild-de Sitter metric is
given by

ds2 ¼ �FðrÞdt2 þ F�1ðrÞdr2 þ r2d�2; (37)

where

FðrÞ ¼ 1� 2GM

r
� �2r2: (38)

The location of the horizon in the Schwarzschild-de Sitter
spacetime can be found by solving the equation

FðrÞ ¼ 0: (39)

We define an extremal mass byMext � 1=ð ffiffiffiffiffiffi
27

p
�GÞ, which

turns out to be a relevant mass scale in our analysis. When

M>Mext, Eq. (39) has no positive root and hence there
does not exist any horizon. In the case of 0<M<Mext,
there are two positive roots, rH and rC (rH < rC), which
satisfy

r2H þ rHrC þ r2C ¼ ��2 (40)

and

rHrCðrH þ rCÞ ¼ 2M��2: (41)

When M ¼ Mext, two positive roots become identical.
We define the quantities 	H and 	C for future use by

	H ¼ rH
1� 3�2r2H

; 	C ¼ � rC
1� 3�2r2C

: (42)

The coordinate patch which can be maximally extended
to cover the entire neighborhood of the black-hole horizon
is given by

u ¼
�ðr� rHÞðrþ rH þ rCÞx�1

ðrC � rÞx
�
1=2

cosh

�
t

2	H

�
;

v ¼
�ðr� rHÞðrþ rH þ rCÞx�1

ðrC � rÞx
�
1=2

sinh

�
t

2	H

�
;

where rH � r < rC and x ¼ 	C=	H. The new metric is
given by

ds2 ¼ 4�2	2
HðrC � rÞ1þxðrþ rH þ rCÞ2�xð�dv2 þ du2Þ

þ r2d�2; (43)

where r is a function of u and v given by

ðr� rHÞðrþ rH þ rCÞx�1

ðrC � rÞx ¼ u2 � v2: (44)

The metric (43) can be maximally extended over the entire
u-v plane, subject to the constraint

u2 � v2 >�rHr
�x
C ðrH þ rCÞx�1: (45)

The coordinate system then covers the entire neighborhood
of the black-hole horizon in the Schwarzschild-de Sitter
spacetime.
Similarly, the coordinate patch which can be maximally

extended to cover the entire neighborhood of the cosmo-
logical horizon is given by

u ¼
� ðrC � rÞ
ðr� rHÞ1=xðrþ rH þ rCÞ1�ð1=xÞ

�
1=2

cosh

�
t

2	C

�
;

v ¼
� ðrC � rÞ
ðr� rHÞ1=xðrþ rH þ rCÞ1�ð1=xÞ

�
1=2

sinh

�
t

2	C

�
;

for rH < r � rC. The new metric is given by

ds2 ¼ 4�2	2
Cðr� rHÞ1þð1=xÞðrþ rH þ rCÞ2�ð1=xÞ

� ð�dv2 þ du2Þ þ r2d�2; (46)

where r is a function of u and v given by
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rC � r

ðr� rHÞ1=xðrþ rH þ rCÞ1�ð1=xÞ ¼ u2 � v2: (47)

The metric (46) can be maximally extended over the entire
u-v plane, subject to the constraint

u2 � v2 >�1: (48)

The coordinate system then covers the entire neighborhood
of the cosmological horizon in the Schwarzschild-de Sitter
spacetime.
In terms of the Bazanski-Ferrari maximally extended

coordinate system discussed above, we can rewrite
SdS as

SdS ¼
�
2�2

2	HðrC � rÞ1þxðrþ rH þ rCÞ2�xðu _v� v _uÞ for black hole horizon;
�2�2

2	Cðr� rHÞ1þð1=xÞðrþ rH þ rCÞ2�ð1=xÞðu _v� v _uÞ for cosmological horizon:
(49)

IV. EVOLUTION OF THE BUBBLE

To discuss the evolution of the bubble and the corre-
sponding spacetime structure, we now introduce the di-
mensionless variables

z3 � r3

r30
; �0 � �2þ�

2�
; (50)

where

r30 �
2MG

�2þ
: (51)

Equation (23) can be rewritten as [1–4]�
dz

d�0

�
2 þ VðzÞ ¼ E; (52)

where

VðzÞ ¼ �
�
z� 1

z2

�
2 � �2

z
; (53)

E ¼ � 4�2

ð2GMÞ2=3�8=3
þ

; (54)

and

�2 ¼ 2

�
1þ ð�2 þ �2

2 � �2
1Þ

�2þ

�
: (55)

Note that 0 � �2 � 4. The equation of motion is equiva-
lent to that of a classical particle moving in one dimension
subject to the potential VðzÞ. The asymptotic behaviors of
the potential VðzÞ are VðzÞ � �1=z4 for small z, and
VðzÞ � �z2 for large z. One can show that d2V=dz2 < 0
for all z and VðzÞ has one maximum at zm, where

z3m ¼ 1
2f½8þ ð1� �2=2Þ2�1=2 � ð1� �2=2Þg: (56)

The maximum value of the potential is given by

VðzmÞ ¼ � 3ðz6m � 1Þ
z4m

: (57)

In terms of the new variables, we can also rewrite dS and
SdS as

dS ¼
�
GM

r20�

�
1

z2

�
1�

�
�2
1 � �2

2 � �2

�2þ

�
z3
�
; (58)

and

SdS ¼
�
GM

r20�

�
1

z2

�
1�

�
�2 þ �2

1 � �2
2

�2þ

�
z3
�
: (59)

If �2 < �2
1 � �2

2, then dS will change sign at z ¼ zdS,
where

zdS ¼
�

�2þ
�2
1 � �2

2 � �2

�
1=3

: (60)

If �2 > �2
2 � �2

1, then SdS will change sign at z ¼ zSdS,
where

zSdS ¼
�

�2þ
�2 þ �2

1 � �2
2

�
1=3

: (61)

In case of both dS and SdS changing sign, since

zdS
zSdS

¼
�
1þ 2�2

�2
1 � �2

2 � �2

�
1=3 � 1; (62)

it follows that zdS � zSdS and the equality holds for � ¼ 0.
The location of the horizon in the Schwarzschild-

de Sitter spacetime is determined by the equation,

1� 2GM

r
� �2

2r
2 ¼ 0; (63)

and in terms of the dimensionless variables, it can be
written as

E ¼ �
�
4�2

�2þ

�
1

z
�

�
4�2�2

2

�4þ

�
z2

¼ VðzÞ þ 1

z4

�
1�

�
�2 þ �2

1 � �2
2

�2þ

�
z3
�
2
: (64)

This curve is tangent to VðzÞ at z ¼ zSdS. Similarly,
the location of the horizon in the inner de Sitter spacetime
is given by the equation, 1� �2

1r
2 ¼ 0, which can be

written as
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E ¼ �
�
4�2�2

1

�4þ

�
z2

¼ VðzÞ þ 1

z4

�
1�

�
�2
1 � �2

2 � �2

�2þ

�
z3
�
2
: (65)

This curve is tangent to VðzÞ at z ¼ zdS.

V. NUMERICAL RESULTS

The system has four mass scales: �1, �2, �, and M,
which are treated as free parameters in the present consid-
eration. In the context of string landscape, �1 and �2 are
given by the cosmological constants of the local minima,
and � can be calculated as long as the profile of the
potential barrier between the minima is known. The initial
conditions of the nucleated bubble determine the value of
M. So far, we have assumed positive cosmological con-
stants. For negative ones, the derivations in the previous
section still hold after making the change: �2 ! ��2. A
general discussion of the system has been given in Ref. [3],
but there lacks details about the parameter space that we
are concerned here. In Ref. [6], the authors considered
�1 >�2 > 0 only. In Ref. [4], only a small � was consid-
ered in the context of quantum fluctuations during infla-
tion. In the following, we will follow the methodology in
Ref. [4] that is suited to our purposes.

The plots of the curves of VðzÞ in Eq. (53) and the event
horizons in Eqs. (64) and (65) are shown in Fig. 1 and 2,
for a representative case using �1 ¼ 3:0, �2 ¼ 2:9, and
� ¼ 0:7375, in units of an arbitrary mass scale. Also drawn
are four horizontal lines each of which denotes the value
of E corresponding to the Schwarzschild mass M given in

0.5 1.5 2.5 3.5 4.5

z

-20.0

-10.0

0.0

V
(z

)

FIG. 1. The graph of VðzÞ (solid line), de-Sitter (dashed line),
and Schwarzschild-de-Sitter (dotted line) horizon lines for
�1 ¼ 3:0, �2 ¼ 2:9, and � ¼ 0:7375 (in unit of a mass scale)
are shown. Long-dashed horizontal lines denote the values of E
corresponding to Mext, Mmax, MSdS, and MdS, respectively.
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FIG. 3. Penrose diagrams representing the motion of the bub-
ble wall in the interior de Sitter spacetime (left) and the exterior
Schwarzschild-de Sitter spacetime (right) are shown. The dia-
grams having the same exterior but different interior geometries
are classified in the same category with an additional suffix.
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FIG. 2. A blow-up graph of the upper-left region around the
peak of the potential in Fig. 1 is shown.
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Eq. (54). Mext is the extremal mass, Mmax ¼ VðzmÞ,
MSdS ¼ VðzSdSÞ, and MdS ¼ VðzdSÞ.

Figure 3 shows the global geometry of the spacetime
represented by Penrose diagrams. In each category, the
left side is the de Sitter spacetime and the right side is
the Schwarzschild-de Sitter spacetime. The dashed or
solid curves with arrows denote the trajectories of the
bubble wall as seen by the observers on both sides. The
Schwarzschild-de Sitter spacetime in the first three cate-
gories on the left column does not have event horizons.
For examples, the dashed line in the diagram labeled
by R6, R7a, R7b, R9a, R9b, or R10 denotes the formation
of a black hole. The dashed line in the diagram labeled
by R5a, R5b, R8a, or R8b denotes the formation of a
wormhole.

We then identify the domain of the dimensionless pa-
rameter space ð2MG�2; �1=�2Þ that falls into the same
category, for three representative values of � given by �2 ¼
j�2

1 � �2
2j, �2 ¼ 104j�2

1 � �2
2j, and �2 ¼ 10�4j�2

1 � �2
2j.

Given a set of values of ð2MG�2; �1=�2Þ, both VðzÞ and E
are fixed and the motion of the bubble wall is determined.
The phase-space diagrams are drawn in Figs. 4–6, respec-
tively, in which the boundaries separating different phases
correspond to the masses defined in Fig. 1.

VI. CONCLUSION

The global structure of the spacetime describing a vac-
uum bubble in a background vacuum has been studied
using the general-relativistic thin-wall formalism. In this
work, the dynamics of the bubble wall is controlled by the
cosmological constants on both sides and the surface en-
ergy density of the domain wall. We have scanned through
the three parameters in a class of geometries and found that
there exists a large parameter space that allows the bubble
to collapse into a black hole or to form a wormhole.
Recent observations indicate that our Universe may be

coasting to a de Sitter space. The parameter space that we
have considered includes the environment for the creation
of a baby universe in the de Sitter background. Also, our
results would be useful to the study of the bubble dynamics
in the string landscape. To investigate the formation rate of
black holes and wormholes in the string landscape is an
interesting problem. We speculate that while slow-roll
inflation is taking place along a flat plateau in the string
landscape, black holes or wormholes are being produced
by bubble nucleation with lower vacuum energies. If the
formation rate is significant compared to the expansion rate
of the inflation, this may have relevant effects on metric
perturbation and may leave an observable signature of the
string landscape scenario.
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FIG. 4. The phase-space diagram of the bubble wall dynamics
under the constraint �2 ¼ j�2

1 � �2
2j is shown. The boundaries

separating different phases are Mext (solid line), Mmax (dotted
line), and MSdS (dashed line).
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2j. The
boundaries separating different phases are Mext (solid line),
overlapping with Mmax and MSdS, and MdS (dotted line).
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